
Quantum Field Theory

Set 7: solutions

Exercise 1

The transformation properties of a Weyl fermion under Charge-conjugation are:

C† χL C = ηLϵχ
∗
R,

C† χR C = ηRϵχ
∗
L.

Let’s apply them to the Lagrangian of a Dirac fermion:

C†LC = iC† χ†
L C σ̄

µ∂µ C
† χL C + iC† χ†

R Cσ
µ∂µC

† χR C −m(C† χ†
R C C

† χL C + h.c.)

= i(ϵχ∗
R)

†σ̄µ∂µ ϵχ
∗
R + i(ϵχ∗

L)
†σµ∂µ ϵχ

∗
L −m(η∗RηL(ϵχ

∗
L)

†ϵχ∗
R + h.c)

= iχTRϵ
T σ̄µ∂µ ϵχ

∗
R + iχTLϵ

Tσµ∂µ ϵχ
∗
L −m(η∗RηLχ

T
Lϵ
T ϵχ∗

R + h.c)

= iχTR(σ
µ∂µ)

T χ∗
R + iχTL(σ̄

µ∂µ)
T χ∗

L −m(η∗RηLχ
T
Lχ

∗
R + h.c).

Where we have used ϵT (σ̄µ)ϵ = (12,−ϵ(σ̄i)ϵ) = (σµ)T and ϵT ϵ = 12. At this point we can integrate the Lagrangian
by parts (recall that it is the action that must be invariant under a symmetry):

C†LC = −i∂µχTR(σµ)T χ∗
R − i∂µχ

T
L(σ̄

µ)T χ∗
L −m(η∗RηLχ

T
Lχ

∗
R + h.c).

In order to simplify we write the indices explicitly:

C†LC = −i∂µχRα(σµ)Tαβ χ∗
Rβ − i∂µχLα(σ̄

µ)Tαβ χ
∗
Lβ −m(η∗RηLχLαχ

∗
Rα + h.c)

= −i∂µχRα(σµ)βα χ∗
Rβ − i∂µχLα(σ̄

µ)βα χ
∗
Lβ −m(η∗RηLχLαχ

∗
Rα + h.c)

= iχ∗
Rβ(σ

µ)βα ∂µχRα + iχ∗
Lβ(σ̄

µ)βα ∂µχLα +m(η∗RηLχ
∗
RαχLα + h.c),

where in the last step we have switched the order of the fermions and used the fact that two fermions anti-commute.
Finally (up to total derivatives):

C†LC = iχ†
L σ̄

µ∂µ χL + iχ†
Rσ

µ∂µχR +m(η∗RηLχ
†
RχL + ηRη

∗
Lχ

†
LχR).

We see that the only way to achieve the invariance of the Dirac action is to impose η∗RηL = −1.
Note that this condition can also be easily obtained by noting that, applying twice the charge conjugation operator
on a Weyl spinor, one should get back the spinor itself: C†C†χLCC = C†ηLϵχ

∗
RC = ηLη

∗
Rϵ

2χL = χL, which implies
η∗RηL = −1 since ϵ2 = −1. Note also that, in order to satisfy the physical requirement C2 = 1, it must be C = C†

(since C is unitary), as it is for parity.
On a Dirac spinor, the action of charge conjugation is

C†
(
χL
χR

)
C =

(
−ηL 0
0 ηR

)
︸ ︷︷ ︸

ηC

i

(
0 1
1 0

)(
0 σ2

−σ2 0

)
︸ ︷︷ ︸

γ0γ2

(
0 1
1 0

)(
χ∗
L

χ∗
R

)
︸ ︷︷ ︸

ψ̄T

,

where we have used σ2 = −iϵ. This proves that UC = iγ0γ2. Note that the choice ηL = −1, ηR = 1, compatible
with the constraint η∗RηL = −1, the matrix ηC can be eliminated from the formalism since it becomes the identity.

Exercise 2

Let’s repeat the steps of Exercise 2 of Set 19, for charge conjugation. We recall the definition of charge conjugation
on the creation and annihilation operators, deduced in Exercise 1,

Ca†(k⃗)C = η∗Cb
†(k⃗), Cb†(k⃗)C = ηCa

†(k⃗),



and write explicitly

C|Φl⟩ =
∫
dΩp⃗ fl(p⃗,−p⃗)Ca†(p⃗)C Cb†(−p⃗)C|0⟩

= ηCη
∗
C

∫
dΩp⃗ fl(p⃗,−p⃗) b†(p⃗) a†(−p⃗)|0⟩

=

∫
dΩp⃗ fl(−p⃗, p⃗) a†(p⃗) b†(−p⃗) |0⟩ = (−1)l|Φl⟩,

where we have repositioned a† and b† in the initial order using the commutation relation [a†, b†] = 0.
Note that the combined action of the two transformations leaves a state of scalar particle-antiparticle invariant:

CP |Φl⟩ = (−1)l+l|Φl⟩ = |Φl⟩.

Let’s now move to fermions, recalling that

Cb†(r, k⃗)C = −η∗C d̃†(r, k⃗) =⇒ Cd̃†(r, k⃗)C = −ηCb†(r, k⃗).

One has

C|Ψl,S⟩ =
∑
r,t

∫
dΩp⃗ fl(p⃗,−p⃗)χS(r, t)Cb†(t, p⃗)CCd̃†(r,−p⃗)C|0⟩

=
∑
r,t

∫
dΩp⃗ fl(p⃗,−p⃗)χS(r, t) d̃†(t, p⃗) b†(r,−p⃗)|0⟩

= −
∑
r,t

∫
dΩp⃗ fl(p⃗,−p⃗)χS(r, t) b†(r,−p⃗) d̃†(t, p⃗)|0⟩ = (−1)l+S |Ψl,S⟩,

where the minus sign in the third line comes from changing the order of the operators, since they anticommute
{d̃†, b†} = 0.
In the end, the combined action of the two transformations on a state made of fermionic particle-antiparticle is
given by:

CP |Ψl,S⟩ = (−1)l+S(−1)l+1|Ψl,S⟩ = (−1)S+1|Ψl,S⟩.

Exercise 3

Given the transformation properties of a Dirac fermion ψ under charge conjugation (C = C†), namely

Cψ(t, x⃗)C = −iηCγ2ψ∗(t, x⃗),

we want to compute the transformation properties of all the bilinears of the form ψ̄Γψ, where Γ is some 4 × 4
matrix. In order to do this, it is sufficient to compute the transformation properties for

Γ = {14, γ5, γµ, γµγ5, γµν},

since we have proved that any 4× 4 matrix can be decomposed into a linear combination of these quantities.
Before proceeding further, it is useful to work out a close form for (γµ)T . The expression for the gamma matrices
is

γµ =

(
0 σµ

σ̄µ 0

)
,

Making use of the Clifford algebra of the gamma matrices, {γµ, γν} = 2ηµν , one can guess a formula for (γµ)T :
γ0, γ2 are symmetric while γ1, γ3 are antisymmetric. Hence

γ0γ2γµγ2γ0 =

 γ0γ2γ0γ2γ0 = −(γ2)2γ0 = γ0 µ = 0,
γ0(γ2)3γ0 = −γ0γ2γ0 = γ2 µ = 2,

γ0γ2γiγ2γ0 = γ0γ2γ2γ0γi = −γi µ = i = 1, 3,

which is = (γµ)T .
Let’s manipulate a bit the transformation under C:

CψC = −iηCγ2ψ∗ = −iηCγ2(ψ†)T = −iηC(ψ†γ2)T = −iηC(ψ̄γ0γ2)T .
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Similarly:
Cψ̄C = Cψ†Cγ0 = −iη∗CψT γ2γ0 = −iη∗C(γ0γ2ψ)T .

Now we are able to compute the transformation properties of the bilinears:

Cψ̄ΓψC = −|ηC |2(γ0γ2ψ)TΓ(ψ̄γ0γ2)T .

A bilinear ψ̄Γψ is a number, since all the spinorial indices are contracted. This means that it is equal to its
transpose, however we must pay attention to ordering, since fermions anticommute:

Cψ̄ΓψC = −(γ0γ2)imψmΓijψ̄n(γ
0γ2)nj = (γ0γ2)imψ̄nψmΓij(γ

0γ2)nj

= ψ̄n(γ
0γ2)njΓij(γ

0γ2)imψm = ψ̄(γ0γ2)ΓT (γ0γ2)ψ = −ψ̄γ2γ0ΓT γ0γ2ψ

Everything is now reduced to understanding what −γ2γ0ΓT γ0γ2 is. Let’s see it case by case:

• Let’s start from the simplest case: Γ = 14. Then:

−γ2γ0γ0γ2 = 1.

This means that:

Cψ̄ψC = ψ̄ψ.

• Let us consider now Γ = γ5. Hence

−γ2γ0γ5γ0γ2 = γ5.

This means that:

Cψ̄γ5ψC = ψ̄γ5ψ.

• The next one is Γ = γµ:

−γ2γ0(γµ)T γ0γ2 = −γ2γ0γ0γ2γµγ2γ0γ0γ2 = −γµ.

This means that

Cψ̄γµψC = −ψ̄γµψ

• The following term is Γ = γµγ5:

−γ2γ0(γµγ5)T γ0γ2 = −γ2γ0γ5(γµ)T γ0γ2

= −γ5γ2γ0(γµ)T γ0γ2 = −γ5γµ = γµγ5.

This means that

Cψ̄γµγ5ψC = ψ̄γµγ5ψ.

• The last term is Γ = γµν ≡ 1
2 [γ

µ, γν ]:

−γ2γ0(γµν)T γ0γ2 = −1

2
γ2γ0[γν T , γµT ]γ0γ2.

Notice that

[γν T , γµT ] = γ0γ2γνγ2γ0γ0γ2γµγ2γ0 − (µ↔ ν) = −γ0γ2[γν , γµ]γ2γ0 = γ0γ2[γµ, γν ]γ2γ0,

so that

−γ2γ0(γµν)T γ0γ2 = −γµν .

This means that

Cψ̄γµνψC = −ψ̄γµνψ.

Due to its transformation under parity, this object is called a tensor.
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Table 1: Summary of bilinear transformations.

∂µ ψ̄ψ ψ̄γ5ψ ψ̄γµψ ψ̄γµγ5ψ ψ̄γµνψ
P Pµ

ρ 1 −1 Pµ
ρ −Pµ

ρ Pµ
ρPν

σ

C 1 1 1 −1 1 −1
T −Pµ

ρ 1 −1 Pµ
ρ Pµ

ρ −Pµ
ρPν

σ

Let us summarize the transformations of bilinears under P (see exercise 3 of set 20) and C. We will include also the
transformation properties of ∂µ: this is because we will make use of the CPT invariance to infer the transformation
of the above bilinears under time reversal T . However the CPT theorem applies only to Lorentz invariant operator,
therefore, when needed, we must contract with the derivative. All transformation properties are summarized in
the table. One can verify that all the Lorentz invariant operators that can be constructed satisfy CPT = 1.

Note that the compact notation regarding the transformation properties of the derivative in the table actually
means that P∂µSP = Pµ

ρ∂
ρS (and similarly for C and T ), where S is a scalar made up with fields: indeed P ,

C, and T act non trivially only on fields. We have P = diag(1,−1,−1,−1).

Exercise 4: local interactions and superposition principle

Let us consider an orthonormalized one particle state

|Ψ⟩ =
∫
dΩkf̂(k)a

†
k|0⟩.

We want to compute the expectation value ⟨Ψ| : φ(x)2 : |Ψ⟩, of the normal ordered field:

: φ(x)2 :≡ φ2
+ + φ2

− + 2φ+φ−,

where

φ+(x) =

∫
dΩk e

ikxa†k, φ−(x) =

∫
dΩk e

−ikxak = (φ+(x))
†
.

First let us notice that the first term φ2
+ contains two creation creation operators, hence the state φ2

+|Ψ⟩ contain
three particles and cannot have any overlap with a one-particle state:

⟨Ψ|φ2
+|Ψ⟩ = ⟨Ψ|φ2

−|Ψ⟩∗ = 0.

Then we just need to compute:
2⟨Ψ|φ+φ−|Ψ⟩ = 2∥φ−|Ψ⟩∥2.

To evaluate the latter, recall ∫
dΩk [ak, a

†
p] =

∫
d3k δ3(k⃗ − p⃗),

whence we obtain

φ−|Ψ⟩ =
∫
dΩk e

−ikx ak

∫
dΩp f̂(p) a

†
p|0⟩ =

∫∫
dΩkdΩp e

−ikxf̂(p) [ak, a
†
p]|0⟩

=

∫
dΩk e

−ikxf̂(k)|0⟩ = f(x)|0⟩,

where we defined the direct space wave-function as:

f(x) ≡
∫
dΩk e

−ikxf̂(k).

Then we find immediately:
⟨Ψ| : φ(x)2 : |Ψ⟩ = 2∥φ−|Ψ⟩∥2 = 2|f(x)|2.
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Consider now an orthonormalized two particle state

|Ψ⟩ =
∫
dΩ1dΩ2f̂1(k1)f̂2(k2)a

†
k1
a†k2 |0⟩.

Let us suppose that the wave-packets f̂1(k1) and f̂2(k2) are spacially separated. This is achieved taking, for
instance,

f1(k) = f2(k)e
iR⃗·⃗k, (1)

so that one finds the direct space packet:∫
dΩ e−ikxf̂1(k) =

∫
dΩ e−ikxf̂2(k)e

iR⃗·⃗k = f2(t, x⃗+ R⃗). (2)

As long as f1(x) has compact support, this is spatially separated for |R⃗| → ∞.
Consider first the norm of the vector:

⟨Ψ|Ψ⟩ =
∫
dΩ3dΩ4dΩ1dΩ2 f̂

∗
1 (k3)f̂

∗
2 (k4)f̂1(k1)f̂2(k2) ⟨0|ak3ak4a

†
k1
a†k2 |0⟩

=

∫
dΩ3dΩ4dΩ1dΩ2 f̂

∗
1 (k3)f̂

∗
2 (k4)f̂1(k1)f̂2(k2)

(
⟨0|ak3 [ak4 , a

†
k1
]a†k2 |0⟩+ ⟨0|ak3a

†
k1
[ak4 , a

†
k2
]|0⟩
)

=

∫
dΩ3dΩ1dΩ2 f̂

∗
1 (k3)f̂

∗
2 (k1)f̂1(k1)f̂2(k2)⟨0|[ak3 , a

†
k2
]|0⟩+

∫
dΩ3dΩ1dΩ2 f̂

∗
1 (k3)f̂

∗
2 (k2)f̂1(k1)f̂2(k2) ⟨0|[ak3 , a

†
k1
]|0⟩

=

∣∣∣∣∫ dΩ f̂∗1 (k)f̂2(k)

∣∣∣∣2 + (∫ dΩ1

∣∣∣f̂1(k1)∣∣∣2)(∫ dΩ2

∣∣∣f̂2(k2)∣∣∣2) .
Notice that the first term comes indeed because we have two equal particles. Now note that by Riemann-Lebesgue
lemma

∫
dΩ f̂∗1 (k)f̂2(k) =

∫
dΩ e−iR⃗·⃗k

∣∣∣f̂2(k)∣∣∣2 |R⃗|→∞−→ 0.

Then in this limit

⟨Ψ|Ψ⟩ =
(∫

dΩ1

∣∣∣f̂1(k1)∣∣∣2)(∫ dΩ2

∣∣∣f̂2(k2)∣∣∣2) .
For a normalized wave-packet we can always require:∫

dΩ1

∣∣∣f̂1(k1)∣∣∣2 =

∫
dΩ2

∣∣∣f̂2(k2)∣∣∣2 = 1. (3)

Now consider the expectation value on this two particle state of : φ(x)2 :. By the same considerations done for
the one-particle state, we get:

⟨Ψ| : φ(x)2 : |Ψ⟩ = 2∥φ−|Ψ⟩∥2.

The computation proceeds as before

φ−|Ψ⟩ =
∫
dΩ dΩ1dΩ2 e

−ikxf̂1(k1)f̂2(k2) aka
†
k1
a†k2 |0⟩

=

∫
dΩ dΩ1dΩ2 e

−ikxf̂1(k1)f̂2(k2)
(
[ak, a

†
k1
]a†k2 |0⟩+ a†k1 [ak, a

†
k2
]|0⟩
)

= f1(x)|Ψ2⟩+ f2(x)|Ψ1⟩,

where we defined

fi(x) =

∫
dΩf̂i(k) e

−ikx, |Ψi⟩ =
∫
dΩ f̂i(k) a

†
ki
|0⟩.

Then:
∥φ−|Ψ⟩∥2 = |f1(x)|2∥|Ψ1⟩∥2 + |f2(x)|2∥|Ψ1⟩∥2 + (f∗1 (x)f2(x)⟨Ψ2|Ψ1⟩+ c.c.) .
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The first two terms, using the normalization (3), are just the sum of the expectation values for two single particle-
states. The last term instead violates the superimposition principle. However for spatially separated wave packets
we have f∗1 (x)f2(x) ≃ 0 and also

⟨Ψ2|Ψ1⟩ =
∫
dΩ f̂∗1 (k)f̂2(k) =

∫
dΩ e−iR⃗·⃗k

∣∣∣f̂2(k)∣∣∣2 |R⃗|→∞−→ 0.

Hence in this limit the superimposition principle holds:

⟨Ψ| : φ(x)2 : |Ψ⟩ = 2
(
|f1(x)|2 + |f2(x)|2

)
.

Finally consider
: φ(x)4 :≡ φ4

+ + 4φ3
+φ− + 6φ2

+φ
2
− + 4φ+φ

3
− + φ4

−.

This is an interesting interaction term to study. The computation is analogous to the previous ones:

⟨Ψ| : ϕ(x)4 : |Ψ⟩ = 6∥ϕ2−|ψ⟩∥2,

ϕ2−|ψ⟩ =
∫
dΩ3dΩ4dΩ1dΩ2 e

−ik3xe−ik4x ak3ak4a
†
k1
a†k2 |0⟩

= . . . = 2f1(x)f2(x).

Then
⟨Ψ| : ϕ(x)4 : |Ψ⟩ = 6∥ϕ2−|ψ⟩∥2 = 24|f1(x)|2|f2(x)|2.

If two wave packets are spatially separeted this vanishes.

Let us now consider the specific case of two time-evolved wave-packets with shapes

f̂1(k⃗) ∝ exp

(
− (k⃗ − k⃗0)

2

2∆2
+ ik⃗ · a⃗

)
f̂2(k⃗) ∝ exp

(
− (k⃗ + k⃗0)

2

2∆2
− ik⃗ · a⃗

)
(4)

Namely, we will consider the state

|Ψ(t)⟩ =
∫
dΩk⃗1dΩk⃗2e

−iω(k1)tf̂1(k⃗1)e
−iω(k2)tf̂2(k⃗2)a

†
k1
a†k2 |0⟩ (5)

where we have applied time evolution e−iHt and the energy is given by ω(k⃗) =
√
k⃗2 +m2 for a particle of mass m.

The computations are analogous to the previous ones. For the norm, we obtain the same result as the previous
one by time translation invariance,

⟨Ψ(t)|Ψ(t)⟩ = ⟨Ψ(0)|Ψ(0)⟩ =

∣∣∣∣∣
∫
dΩf̂∗1 (k⃗)f̂2(k⃗)

∣∣∣∣∣+
(∫

dΩ1|f̂1(k⃗1)|2
)(∫

dΩ2|f̂2(k⃗2)|2
)

(6)

For the specific shapes (4), the first term still vanishes when |⃗a| → ∞ which corresponds to very separated states
at a fixed value of time. However, in general, it doesn’t. Now consider the more interesting correlator

⟨Ψ(t)| : φ(0, x⃗)2 : |Ψ(t)⟩ (7)

where for simplicity we’ve set the time component of ϕ to 0. Proceeding as before, one needs to compute

⟨Ψ(t)| : φ(0, x⃗)2 : |Ψ(t)⟩ = ||φ−(0, x⃗)|Ψ(t)⟩||2. (8)

where one obtains

φ−(0, x⃗)|Ψ(t)⟩ =
∫
dΩk⃗e

−iω(k⃗)t+ik⃗·x⃗f̂1(k⃗)︸ ︷︷ ︸
≡f1(t,x⃗)

∫
dΩk⃗2e

−iω(k⃗2)tf̂2(k⃗2)a
†
k⃗2
|0⟩︸ ︷︷ ︸

≡|Ψ2(t)⟩

+

∫
dΩk⃗e

−iω(k⃗)t+ik⃗·x⃗f̂2(k⃗)︸ ︷︷ ︸
≡f2(t,x⃗)

∫
dΩk⃗1e

−iω(k⃗1)tf̂1(k⃗1)a
†
k⃗1
|0⟩︸ ︷︷ ︸

≡|Ψ1(t)⟩

(9)
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Thus, we now have

⟨Ψ(t)| : φ(0, x⃗)2 : |Ψ(t)⟩ = |f1(t, x⃗)|2⟨Ψ2(t)|Ψ2(t)⟩+ |f2(t, x⃗)|2⟨Ψ1(t)|Ψ1(t)⟩+ (f∗1 (t, x⃗)f2(t, x⃗)⟨Ψ1(t)|Ψ2(t)⟩+ c.c.)
(10)

Here we notice that the term that violates the superimposition principle is time-dependent. If at t → ±∞, the
shapes have no overlap in position space, then this term vanishes, as expected physically. Let us examine the
specific shapes (4). The goal will be to understand the form of fi(t, x⃗) when f̂i are peaked around ±k⃗0 i.e. when
∆ is small compared to the other scales of the problem. Let us start with f1(t, x⃗). We thus compute

f1(t, x⃗) ∝
∫
dΩk⃗ exp

(
−|⃗k − k⃗0|2

2∆2
+ ik⃗ · (⃗a+ x⃗)− iω(k⃗)t

)
(11)

in the limit of small ∆. Let us change variables from k⃗ to q⃗ by k⃗ = k⃗0 + q⃗ ∆ and expand the exponent up to the
first non-trivial term in ∆. We obtain

f1(t, x⃗) ∝ eik⃗0·(x⃗+a⃗)−iω(k⃗0)t
∫
dΩk⃗0+q⃗∆ exp

(
−q

2

2
− it∆

∂ω(k⃗)

∂k⃗

∣∣∣∣∣
k⃗=k⃗0

·q⃗ + i∆q⃗ · (x⃗+ a⃗) + . . .

)
(12)

Now complete the square in the exponent, namely

−q
2

2
− it∆

∂ω(k⃗)

∂k⃗

∣∣∣∣∣
k⃗=k⃗0

·q⃗ + i∆q⃗ · (x⃗+ a⃗) = −1

2

(
q⃗ − i∆

(
x⃗+ a⃗− ∂ω

∂k⃗
t

))2

− 1

2
∆2

(
x⃗+ a⃗− ∂ω

∂k⃗
t

)2

(13)

Ignoring the measure factor1, the integral over q⃗ is Gaussian, and thus produces a number independent from t and
x⃗. We’re thus left with

f1(t, x⃗) ∝ eik⃗0·(x⃗+a⃗)−iω(k⃗0)t exp

(
−1

2
∆2

(
x⃗+ a⃗− ∂ω

∂k⃗
t

)2
)

(14)

In our relativistic case,

∂ω

∂k⃗

∣∣∣∣∣
k⃗0

=
k⃗0√

k⃗20 +m2

= β⃗0 (15)

is the expected velocity β0 of a particle of mass m moving with momentum k⃗0. Note that to compute f2(t, x⃗), one

simply needs to change the sign k⃗0 → −k⃗0 and a⃗→ −a⃗. We thus obtained,

f1(t, x⃗) ∝ eik⃗0·(x⃗+a⃗)−iω(k⃗0)t exp

(
−1

2
∆2
(
x⃗+ a⃗− β⃗0t

)2)
(16)

f2(t, x⃗) ∝ e−ik⃗0·(x⃗−a⃗)−iω(k⃗0)t exp

(
−1

2
∆2
(
x⃗− a⃗+ β⃗0t

)2)
(17)

In position space, f1(x⃗, t) is thus peaked at x⃗ = −a⃗ + β⃗0t while f2(t, x⃗) is peaked at x⃗ = a⃗ − β⃗0t. Both have a
width δx ∼ 1/∆. This allows to draw the shapes of f1 and f2 as shown in Figure 1 below. It is clear for this
example that as t→ ±∞, f1 and f2 have no overlap, and thus the superimposition principle holds, even for finite
a⃗.

1To be precise, one can multiply f̂1 by a pre-factor 2ω(k⃗) to cancel the measure term in dΩ
k⃗
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Figure 1: Time evolution of the gaussian shapes

Digression on normal ordering

Products of fields at the same point are mathematically ill defined in general. Indeed fields are distribution valued
operators and the product of distributions is not well defined. This does not mean that we cannot make sense at
all of them in a quantum field theory, but simply that a prescription to make sense of objects like φ(x)2 is needed.
In other words, we have to define their meaning in a consistent way.
A simple example of the need of such a prescription is found computing the Hamiltonian of a free scalar field
theory. A straightforward computation (see chap. 4 of the lecture notes) leads to the expression:

H =
1

2

∫
d3x

[
φ̇(x)2 +

(
∇⃗φ(x)

)2
+m2φ(x)2

]
=

1

2

∫
dΩk ωk

(
a†kak + aka

†
k

)
.

Now using the commutation rules [ak, a
†
p] = (2π)32ωkδ

3(k⃗ − p⃗), we get:

H =

∫
dΩk ωk a

†
kak + (2π)3δ3(0)

∫
d3k

(2π)3
ωk
2
.

The second term is divergent, even when performing the substitution (2π)3δ3(0) → V . This is called the zero-
point energy or vacuum energy. We can regulate the divergence putting a cutoff Λ over large momenta, so that
we integrate only over |p⃗| < Λ. This is motivated by the fact that we cannot observe particles at arbitrary high
energy in experiments, hence we expect our theory to be valid only at energies below a certain cutoff. In this way
we get the vacuum energy density:

ρvac ∼
∫ Λ

p3dp ∼ Λ4.

In this case the divergence however is relatively harmless. Since what we measure are energy differences2, we can
simply discard zero-point energy and declare that our Hamiltonian is

H =

∫
dΩk ωk a

†
kak. (18)

We can formalize our discussion, saying that the Hamiltonian involve products of fields at coincident points and
this leads to a diverging result; however we can still make sense of it, for instance introducing a cutoff. The natural

2This is true only as long as we do not consider gravity; in general relativity the zero-point energy might act as a cosmological
constant term.
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prescription that gives (18) corresponds to defining products of operator through the normal ordering : given an
operator O, we define its normal ordered form : O : as the operator obtained writing by hand all creation operators
to the left of all destruction operators. Thus for instance : apa

†
p := a†pap and we immediately get

: H :=

∫
dΩk ωk a

†
kak.
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