Quantum Field Theory

Set 7: solutions

Exercise 1

The transformation properties of a Weyl fermion under Charge-conjugation are:

CTxr C =nrexh,
CTxr C = nrex;,.

Let’s apply them to the Lagrangian of a Dirac fermion:
ctee =ictxt €519, Ctxp C +iCT\1, Co#9,Ct xr C — m(CT X1, C CT xr C + h.c)

— iexi)1 70 exi + ilexi) oD, exi — mnime(exi) exh + hec)

= ixgeTc_r“aﬂ eXh + ix{eTJ“8,L exs —mmpnLxtelexh + h.c)

= ix(0"0,)" Xk +iXL(0"0,)" XL — m(EnLXLXR + h.o).
Where we have used € (6/)e = (13, —€(6%)e) = (0#)T and €'e = 1,. At this point we can integrate the Lagrangian
by parts (recall that it is the action that must be invariant under a symmetry):

CTLC = —iduxh (") Xk — 10ux1(6")" X7, — ML XL xR + hec).

In order to simplify we write the indices explicitly:

C'LC = =iBuxRa(0")hg XRp — 10uXLa(0") 55 X1 5 — MMENLX LaX e + h-C)
= —10uXRra(0")ga Xgs — 10uXLa(0")ga X1.g — M(NRNLXLaXRa + h-C)
= iXrp(0")ga OuXra +iX13(0")sa OuXLa + MMENLX RaXLa + h.C),

where in the last step we have switched the order of the fermions and used the fact that two fermions anti-commute.
Finally (up to total derivatives):

CtL e =ixt 570, xo + ixh0"0uxr + mmEnLxhxr + nrmixtxr)-

We see that the only way to achieve the invariance of the Dirac action is to impose ninr = —1.

Note that this condition can also be easily obtained by noting that, applying twice the charge conjugation operator
on a Weyl spinor, one should get back the spinor itself: CTCTy,CC = CTnLex*RC = nLn}k%ezxL = XL, which implies
ngnr = —1 since €2 = —1. Note also that, in order to satisfy the physical requirement C? = 1, it must be C' = Ct
(since C' is unitary), as it is for parity.

On a Dirac spinor, the action of charge conjugation is

(e () )G

nc ~O0~2 T

where we have used 02 = —ie. This proves that Uc = i7°y2. Note that the choice n;, = —1, ng = 1, compatible

with the constraint nj%n, = —1, the matrix nc can be eliminated from the formalism since it becomes the identity.

Exercise 2

Let’s repeat the steps of Exercise 2 of Set 19, for charge conjugation. We recall the definition of charge conjugation
on the creation and annihilation operators, deduced in Exercise 1,

Cal(k)C =npbl(k),  Cb(R)C = nea (k),



and write explicitly
i) = [ dss 17 ~) Cal (7)C OV (~p)CI0)
= e [ 9 75—V ol (-0
= [ a9 p-rp )V - 10) = (1)),

where we have repositioned af and b' in the initial order using the commutation relation [af, bt] = 0.
Note that the combined action of the two transformations leaves a state of scalar particle-antiparticle invariant:

CP|®;) = (1) @) = ®y).
Let’s now move to fermions, recalling that
Ol (r,k)C = —nid (r,k) = Cd(r,E)C = —neb'(r, k).
One has

Clwns) = 3 [ a0 fi.—) xs(r,t) V(1. HCCE (r,~1CT)

=Y [ 49 5.~ xsr: ) A )V (.- )

= [ 9 A xs () V= 0 910) = (1)),

where the minus sign in the third line comes from changing the order of the operators, since they anticommute
{dt, bt} =o0.
In the end, the combined action of the two transformations on a state made of fermionic particle-antiparticle is
given by:

CP|V;s) = (=1 (=)W, 5) = (=1)°FH Ty 5).

Exercise 3

Given the transformation properties of a Dirac fermion ) under charge conjugation (C = CT), namely
Cy(t, 7)C = —incy*y*(t, 7),

we want to compute the transformation properties of all the bilinears of the form I, where I' is some 4 x 4
matrix. In order to do this, it is sufficient to compute the transformation properties for

r= {1437537M77H75,7HV}7

since we have proved that any 4 x 4 matrix can be decomposed into a linear combination of these quantities.
Before proceeding further, it is useful to work out a close form for (v#)T. The expression for the gamma matrices

is
0 o
N:

Making use of the Clifford algebra of the gamma matrices, {y#, v*} = 2n*¥, one can guess a formula for (y*)7:
~9, 42 are symmetric while 7!, 42 are antisymmetric. Hence

0.2~04240

Sy Y0p20920 = —(7%)%4° = 4° p=0,
Y2 ytay2y0 = (2P = %20 =% p=2,
V0 =092y = p=i=13

which is = (y#)7.

Let’s manipulate a bit the transformation under C:
CYC = —incy* " = —iney* (Y1) = —inc(v14*)" = —inc (b2"4*)".
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Similarly:
CPC = CYIC° = —ingpT 7?40 = —ins (1 0y*y)".

Now we are able to compute the transformation properties of the bilinears:

CYTYC = —[nc*(*v* ) T (r"y*)".
A bilinear ¢T'% is a number, since all the spinorial indices are contracted. This means that it is equal to its
transpose, however we must pay attention to ordering, since fermions anticommute:

CyYTIypC = j(vovz)imzbmfijin(vovz)m = (V° YD) imnom i (799 )n;
= P (V7 Lij (V) imtm = ¥ (°V*)IT (1092)¢ = —py?+°TT709%
OFT,YO,YQ

Everything is now reduced to understanding what —~2+ is. Let’s see it case by case:

e Let’s start from the simplest case: I' = 14. Then:

,727070,}/2 1.

This means that:
CpypC = Y.

e Let us consider now I' = 4°. Hence

=770 =P,

This means that:
CYy°pC = Py .
e The next one is I' = v*:

()T = =00 =

This means that
CPyypC =~y
o The following term is I’ = y#~°:

=20 (%) T2 = =424 045 (1) T 402

This means that
CPYH v YC = pyHy°4.
e The last term is I' = 4* = L[y#,4"]:

1
=)0 = =57 T T

Notice that

T AT = A0 P 0P P = (e ) = =00 A =0 I

so that
—P0 ()T = =y
This means that
CpyypC = —yHa).
Due to its transformation under parity, this object is called a tensor.
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Table 1: Summary of bilinear transformations.

|| 8 [0 | 9 | v [ v | vy

Pl 20, [ 1| -1 | 78, | —2", | 21,27,
cl 1 1| 1 -1 1 -1
T |-, | 1| -1 | o0, | on, | —pr,v,

Let us summarize the transformations of bilinears under P (see exercise 3 of set 20) and C. We will include also the
transformation properties of d,: this is because we will make use of the CPT invariance to infer the transformation
of the above bilinears under time reversal 7. However the CPT theorem applies only to Lorentz invariant operator,
therefore, when needed, we must contract with the derivative. All transformation properties are summarized in
the table. One can verify that all the Lorentz invariant operators that can be constructed satisfy CPT = 1.

Note that the compact notation regarding the transformation properties of the derivative in the table actually
means that P9,SP = #",0°S (and similarly for C' and T'), where S is a scalar made up with fields: indeed P,
C, and T act non trivially only on fields. We have & = diag(1, -1, -1, —1).

Exercise 4: local interactions and superposition principle
Let us consider an orthonormalized one particle state
T = /kof(k)a,Um.
We want to compute the expectation value (¥| : p(z)? : |¥), of the normal ordered field:

s o(x)? = 0 + 2 + 2040,

where

pi(z) = /ko e*ral, p-(z) = /ko e ay = (¢ (2))".

First let us notice that the first term % contains two creation creation operators, hence the state 3 |¥) contain
three particles and cannot have any overlap with a one-particle state:

(W2 W) = (Vg2 |9)" = 0.
Then we just need to compute:
24— |T) = 2] T)]|*.
To evaluate the latter, recall
/ko lax, af) = /d3k 83k — p),
whence we obtain
ool = [doe e a [ a0, fw)aflo) = [ [ a0, e fp) o, af)o)
= [ fwio) = s@)o),

where we defined the direct space wave-function as:

flz) = /ko e f (k).

Then we find immediately:
(U] p(2)? 2 [9) = 2[l- W) ||* = 2/ f ().



Consider now an orthonormalized two particle state

‘\I’> = /dQldQQfl(k1>f2(k2)a£1aL2|0>.
Let us suppose that the wave-packets fl(kl) and fg(kg) are spacially separated. This is achieved taking, for
instance,

fi(k) = fQ(k)eiR‘Ev (1)

so that one finds the direct space packet:
/dQe‘“””fl( ) = /dQe‘““fg( VelBE = fo(t, 7 + R). 2)

As long as f1(x) has compact support, this is spatially separated for \ﬁ| — 00.
Consider first the norm of the vector:

(U] T) = / dQ3dQudQdQ f (ks) f3 (ka) f1(k1) f2(k2) (Olak,ax,af, af, |0)
= / AQdQuddQ f (k) f5 (ka) Fu(kn) Fa k) ((Olaxy [an,, o], Jaf, 10) + (Olaxyal, lax,. af,]0})

= /d93d91d92 Fi (k) f5 (ko) 1 (k) f2(k2) (Ol [ax,, af,]|0) +/d93d91d92 F1 (ks) f3 (k2) fi (k1) Fa(k2) (Ol[ak,, af,1]0)

_ ‘/dﬂff(k)f;(k) cL (/dﬂl (fl(kl)r) (/sz ‘fz(k’z)r).

Notice that the first term comes indeed because we have two equal particles. Now note that by Riemann-Lebesgue
lemma

12 | Rl—eo
/dQﬁ ) fo (I /dQe‘le Qk)‘ 2

(U] W) = (/dQl ’fl k1 ) (/dQQ ]fg(kg)f).

For a normalized wave-packet we can always require:

Then in this limit

/dQl ‘fl(kl)f _ /sz ‘fz(/@)f _1 (3)

Now consider the expectation value on this two particle state of : ¢(z)? :. By the same considerations done for
the one-particle state, we get:

(U] = p(x)” : [®) = 2l T)]*.

The computation proceeds as before
(V2. |\I/> = /dQ dQldQQ e—ikxfl (k‘l)fg(k‘g) aka,tl azz |0>

- /deQldQQ e~ f (k1) fa (k) ([ak,alllahlm +af, [ak,afmw)
= fi(@)[¥2) + fa(2)[¥1),

where we defined
fi(x):/dﬂfi(k) etk |W,) :/dgﬁ-(zf) af, 10).

Then:
o [0 = [ (@) PN + [ f2(2) PITEDIZ + (1 (2) fa(2) (P2 ¥1) + c.c.) .



The first two terms, using the normalization (3), are just the sum of the expectation values for two single particle-
states. The last term instead violates the superimposition principle. However for spatially separated wave packets
we have f](z)f2(z) =~ 0 and also

(Wal) = [ a2 fr0fa(h) = [ ae T |fagi] T

Hence in this limit the superimposition principle holds:

(0] p(2)* : [0) = 2 (|f1(2)* + | fa(2)?) -

Finally consider
to()t = o) + A0S o + 60507 + e+l

This is an interesting interaction term to study. The computation is analogous to the previous ones:

(U] pa)* : [) = 6]162 |v) |,

P2 |9) /ngdQ4dQldQQ e thaT o ihaz aksak4aL1aL2 |0)

Then
(U] : p(a)* - [@) = 6]|¢2 [)[|* = 24| f1 () [*| fa(2) >

If two wave packets are spatially separeted this vanishes.

Let us now consider the specific case of two time-evolved wave-packets with shapes

n (k=ko)* =\ = (k+FRo)? -
f1(k) < exp <_2A2 +ik-d fa(k) ox exp _W_Zk'a (4)
Namely, we will consider the state
W(0)) = [ do, dtg e <y e 0 oo )al a0 (5)

where we have applied time evolution e~*#* and the energy is given by w(k) = V'k2 + m?2 for a particle of mass m.
The computations are analogous to the previous ones. For the norm, we obtain the same result as the previous

one by time translation invariance,
+ ([ aonair) ( [ doalfaiie) 0

For the specific shapes (4), the first term still vanishes when |@| — oo which corresponds to very separated states
at a fixed value of time. However, in general, it doesn’t. Now consider the more interesting correlator

(W)W () = (L(0)[¥(0)) = |/dﬂfi‘(/5)fz(15)

(U] p(0,)% : [ (2)) (7)
where for simplicity we’ve set the time component of ¢ to 0. Proceeding as before, one needs to compute
(T()] : p(0,2)% : [T(2)) = |l (0, )T (). (8)

where one obtains

(p,(o,f)mf(t» _ /dQ]ge—iw(E)t-i—iEffl(E)/dQ@e—iw(Ez)th(EQ)a% |O>

=f1(t,2) =[W2 (1)) 9)
+ /dQEe_iw(E)t—Hﬂ'ffg(E)/dﬂgle_iw(gl)tfl(gl)agl‘0>
= (t,%) =T (2))
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Thus, we now have

()] = 9(0,2)% < [W(1) = |fu (1, ) PO (8) [ W (8)) + | ol )2 (@1 (DIW1 () + (£ (6, 2) fo 1, ) (W1 (8)| W (1)) + ee)

10
Here we notice that the term that violates the superimposition principle is time-dependent. If at ¢ — +oo, the
shapes have no overlap in position space, then this term vanishes, as expected physically. Let us examine the
specific shapes (4). The goal will be to understand the form of f;(¢,Z) when f; are peaked around +kg i.e. when
A is small compared to the other scales of the problem. Let us start with fy(¢,Z). We thus compute

1(t,Z) /dQ exp< _Ak0|2 +ik - (@+ f)—iw(E)t) (11)

in the limit of small A. Let us change variables from k to q by k= Igo + ¢ A and expand the exponent up to the
first non-trivial term in A. We obtain

Ko (34)—ito R 2 Ow(k
fl (t7f) o €1k0~(w+a)—zw(ko)t/dQE N exp (_q —itA (’(1‘;5_{' )

2

G+iAG- (Z+3) +> (12)

k=Fko

Now complete the square in the exponent, namely
1 Ow 1 ow \?
-+ IAG- f—kc‘i:—(cj’—iA(m—&-a—t)) —AQ(:E—i-cT—_,t) 13
o =-3 o 2 o (13)

Ignoring the measure factor!, the integral over ¢ is Gaussian, and thus produces a number independent from ¢ and
Z. We're thus left with

2
T 1
f1(t, @) o etko @@ —iwko)t oy [~ A2 (:z+ a— a“ﬁt) (14)
2 ok
In our relativistic case,
Ow k >
=== =5 (15)
ke, \JRg+m?

is the expected velocity By of a particle of mass m moving with momentum Eo. Note that to compute fa(t, &), one
simply needs to change the sign ky — —ko and @ — —d. We thus obtained,

e 1 N
fl(ta f) o ezko-(era)*zw(ko)t exp (2A2 (f+ a— 50t> > (16)

e 1 N2
fg(t,f) o~ efzko‘(acfa)fiw(ko)t exp (—2A2 (a—:o_ a4+ 60t> > (17)

In position space, f1(&#,t) is thus peaked at ¥ = —a + Bot while fa(t, ©) is peaked at & = @ — Bot. Both have a
width dz ~ 1/A. This allows to draw the shapes of f; and fs as shown in Figure 1 below. It is clear for this
example that as ¢ — 400, f; and f; have no overlap, and thus the superimposition principle holds, even for finite

—

a.

ITo be precise, one can multiply fl by a pre-factor 2w(E) to cancel the measure term in dQ;
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Figure 1: Time evolution of the gaussian shapes
Digression on normal ordering

Products of fields at the same point are mathematically ill defined in general. Indeed fields are distribution valued
operators and the product of distributions is not well defined. This does not mean that we cannot make sense at
all of them in a quantum field theory, but simply that a prescription to make sense of objects like ¢(x)? is needed.
In other words, we have to define their meaning in a consistent way.

A simple example of the need of such a prescription is found computing the Hamiltonian of a free scalar field
theory. A straightforward computation (see chap. 4 of the lecture notes) leads to the expression:

H= %/d?’m {¢(x)2 + (ﬁw(x))Q + m%p(w)ﬂ = %/ko W (azak + akaT) .

Now using the commutation rules [ay, a;f)] = (27)32wy,63(k — P), we get:

Ak Wk
(2m)3 27

H= /ko Wk a}iak + (2#)353(0)/

The second term is divergent, even when performing the substitution (27)3§3(0) — V. This is called the zero-
point energy or vacuum energy. We can regulate the divergence putting a cutoff A over large momenta, so that
we integrate only over |[p] < A. This is motivated by the fact that we cannot observe particles at arbitrary high
energy in experiments, hence we expect our theory to be valid only at energies below a certain cutoff. In this way
we get the vacuum energy density:

A
Pvac ™~ / p3dp ~ A4-
2

In this case the divergence however is relatively harmless. Since what we measure are energy differences®, we can
simply discard zero-point energy and declare that our Hamiltonian is

H = /kowk alak. (18)

We can formalize our discussion, saying that the Hamiltonian involve products of fields at coincident points and
this leads to a diverging result; however we can still make sense of it, for instance introducing a cutoff. The natural

2This is true only as long as we do not consider gravity; in general relativity the zero-point energy might act as a cosmological
constant term.



prescription that gives (18) corresponds to defining products of operator through the normal ordering: given an
operator O, we define its normal ordered form : O : as the operator obtained writing by hand all creation operators

to the left of all destruction operators. Thus for instance : ayaf, := afa, and we immediately get

H = /dﬂkwk alak.



